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Abstract

Single-cell analysis is a powerful tool for dissecting the cellular composition within a tissue or organ. However, it
remains difficult to detect rare and common cell types at the same time. Here, we present a new computational
method, GiniClust2, to overcome this challenge. GiniClust2 combines the strengths of two complementary
approaches, using the Gini index and Fano factor, respectively, through a cluster-aware, weighted ensemble
clustering technique. GiniClust2 successfully identifies both common and rare cell types in diverse datasets,
outperforming existing methods. GiniClust2 is scalable to large datasets.
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Background
Genome-wide transcriptomic profiling has served as a
paradigm for the systematic characterization of molecular
signatures associated with biological functions and
disease-related alterations, but traditionally this could only
be done using bulk samples that often contain significant
cellular heterogeneity. The recent development of single-
cell technologies has enabled biologists to dissect cellular
heterogeneity within a cell population. Such efforts have
led to an increased understanding of cell-type compos-
ition, lineage relationships, and mechanisms underlying
cell-fate transitions. As the throughput of single-cell tech-
nology increases dramatically, it has become feasible not
only to characterize major cell types, but also to detect
cells that are present at low frequencies, including those
that are known to play an important role in development
and disease, such as stem and progenitor cells, cancer-
initiating cells, and drug-resistant cells [1, 2].
On the other hand, it remains a computational chal-

lenge to fully dissect the cellular heterogeneity within a
large cell population. Despite the intensive effort in
method development [3–8], significant limitations re-
main. Most methods are effective only for detecting

common cell populations, but are not sensitive enough
to detect rare cells. A number of methods have been de-
veloped to specifically detect rare cells [9–12], but the
features used in these methods are distinct from those
distinguishing major populations. Existing methods can-
not satisfactorily detect both large and rare cell popula-
tions. A naïve approach combining features that are
either associated with common or rare cell populations
fails to characterize either type correctly, as a mixed fea-
ture space will dilute both common and rare cell type-
specific biological signals, an unsatisfactory compromise.
To overcome this challenge, we have developed a new

method, GiniClust2, to integrate information from com-
plementary clustering methods using a novel ensemble
approach. Instead of averaging results from individual
clustering methods, as is traditionally done, GiniClust2
selectively weighs the outcomes of each model to
maximize the methods’ respective strengths. We show
that this cluster-aware weighted ensemble approach can
accurately identify both common and rare cell types and
is scalable to large datasets.

Results
Overview of the GiniClust2 method
An overview of the GiniClust2 pipeline is shown in
Fig. 1. We begin by independently running both a
rare cell type-detection method and a common cell
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type-detection method on the same data set (Fig. 1a).
In a previous study [11], we showed that different
strategies are optimal for identifying genes associated
with rare cell types compared to common ones.
Whereas the Fano factor is a valuable metric for cap-
turing differentially expressed genes specific to com-
mon cell types, the Gini index is much more effective
for identifying genes that are associated with rare
cells [11]. Therefore, we were motivated to develop a
new method that combines the strengths of these two
approaches. To facilitate a concrete discussion, here
we choose GiniClust as the Gini index-based method

and k-means as the Fano factor-based method. How-
ever, the same approach can be used to combine any
other clustering methods with similar properties. We
call this new method GiniClust2.
Our goal is to consolidate these two differing cluster-

ing results into one consensus grouping. The output
from each initial clustering method can be represented
as a binary-valued connectivity matrix, Mij, where a
value of 1 indicates cells i and j belong to the same clus-
ter (Fig. 1b). Given each method’s distinct feature space,
we find that GiniClust and Fano factor-based k-means
tend to emphasize the accurate clustering of rare and

Fig. 1 An overview of the GiniClust2 pipeline. a The Gini index and Fano factor are used (left), respectively, to select genes for GiniClust and Fano-based
clustering (middle left). A cluster-aware, weighted ensemble method is applied to each of these, where cell-specific cluster-aware weights wF

i and wG
i are

represented by the shading of the cells (middle right), to reach a consensus clustering (right). b A schematic of the weighted consensus
association calculation, with association matrices in black and white, weighting schemes in red and blue, and final GiniClust2 clusters highlighted in white.
c Cell-specific GiniClust and Fano-based weights are defined as a function of cell-type proportion, where parameters μ, s, and f define the shapes of the
weighting curves
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common cell types, respectively, at the expense of their
complements. To optimally combine these methods, a
consensus matrix is calculated as a cluster-aware,
weighted sum of the connectivity matrices, using a vari-
ant of the weighted consensus clustering algorithm de-
veloped by Li and Ding [13] (Fig. 1b). Since GiniClust is
more accurate for detecting rare clusters, its outcome is
more highly weighted for rare cluster assignments, while
Fano factor-based k-means is more accurate for detect-
ing common clusters and therefore its outcome is more
highly weighted for common cluster assignments.
Accordingly, weights are assigned to each cell as a func-
tion of the size of the cluster to which the cell belongs
(Fig. 1c). For simplicity, the weighting functions are mod-
eled as logistic functions which can be specified by three
tunable parameters: μ is the cluster size at which Gini-
Clust and Fano factor-based clustering methods have the
same detection precision, s represents how quickly Gini-
Clust loses its ability to detect rare cell types, and f repre-
sents the importance of the Fano cluster membership in
determining the larger context of the membership of each
cell. The values of parameters μ and s are specified as a
function of the smallest cluster size detectable by
GiniClust and the parameter f is set to a constant
(“Methods”, Additional file 1). The resulting cell-specific
weights are transformed into cell pair-specific weights wG

ij

and wF
ij (“Methods”), and multiplied by their respective

connectivity matrices to form the resulting consensus
matrix (Fig. 1b). An additional round of clustering is then
applied to the consensus matrix to identify both common
and rare cell clusters. The mathematical details are de-
scribed in the “Methods” section.

Accurate detection of both common and rare cell types in
a simulated dataset
We started by evaluating the performance of GiniClust2
using a simulated scRNA-seq dataset, which contains
two common clusters (of 2000 and 1000 cells, respect-
ively) and four rare clusters (of ten, six, four, and three
cells, respectively) (“Methods”, Fig. 2a). We first applied
GiniClust and Fano factor-based k-means independently
to cluster the cells. As expected, GiniClust correctly
identifies all four rare cell clusters, but merges the two
common clusters into a single large cluster (Fig. 2b,
Additional file 1, Additional file 2: Figure S1). In con-
trast, Fano factor-based k-means (with k = 2) accurately
separates the two common clusters, while lumping to-
gether all four rare cell clusters into the largest group
(Fig. 2b, Additional file 1, Additional file 2: Figure S1).
Increasing k past k = 3 results in dividing each common
cluster into smaller clusters, without resolving all rare
clusters, indicating an intrinsic limitation of selecting
gene features using the Fano factor (Additional file 2:

Figure S2a). We find this limitation to be independent of
the clustering method used, as applying alternative clus-
tering methods to the Fano factor-based feature space,
such as hierarchical clustering and community detection
on a kNN graph, also results in the inability to resolve
rare clusters (Fig. 2b, Additional file 1, Additional file 2:
Figure S1). Furthermore, simply combining the Gini and
Fano feature space fails to provide a more satisfactory
solution (Additional file 1, Additional file 2: Figure S3).
These analyses signify the importance of feature selec-
tion in a context-specific manner.
We next used the GiniClust2 weighted ensemble step

to combine the results from GiniClust and Fano factor-
based k-means. Of note, all six cell clusters are perfectly
recapitulated by GiniClust2 (Fig. 2b, Additional file 1,
Additional file 2: Figure S1), suggesting that GiniClust2
is indeed effective for detecting both common and rare
cell clusters. To aid visualization, we created a compos-
ite tSNE plot, projecting the cells into a three-
dimensional space based on a combination of a two-di-
mensional Fano-based tSNE map and a one-
dimensional Gini-based tSNE map (Fig. 2c). A three-
dimensional space is required because, although the
Fano-based dimensions are able to clearly separate the
two common clusters, the rare clusters are overlapping
and cannot be fully discerned. The third (Gini) dimension
results in complete separation of the rare clusters. Unlike
a traditional tSNE plot, this composite view does not cor-
respond to a single projection of a high-dimensional data-
set into a three-dimensional space but integrates two
orthogonal views obtained from different high-
dimensional features. Although the distance does not have
a simple interpretation, it provides a convenient way to
visualize data from complementary views.
Since the number of common clusters is unknown in

advance, we also tested the robustness of GiniClust2
with respect to other choices of k. We found that setting
k = 3 provides the same final clustering, while further in-
crease results in poorer performance by splitting of the
larger clusters (Additional file 2: Figure S2b). By default,
the value of k was chosen using the gap statistic, which
coincided with the number of common clusters (k = 2)
[14]. However, this metric may not be optimal in various
cases when the underlying distribution is more complex
[15]; therefore, additional exploration is often needed to
select the optimal value for k. Since the clustering out-
come is sensitive to the choice of k (Additional file 1),
we recommend using the gap statistic as a starting point
for choosing k, and then evaluating this choice of k by
checking the resulting clusters for adequate separation
in the Fano factor-based tSNE plot and expression of
distinct and biologically relevant genes.
For comparison, we evaluated the performance of

two unweighted ensemble clustering methods. First,
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we used the cluster-based similarity partitioning algo-
rithm (CSPA) [16] to combine the GiniClust and
Fano factor-based k-means (k = 2) clustering results.
The consensus clustering splits the common clusters into
six subgroups, whereas cells in the four rare clusters are
assigned to one of two clusters shared with the largest
common cell group (Fig. 2b, Additional file 1, Additional
file 2: Figure S1). Without guidance, the consensus clus-
tering treats all clustering results equally and attempts to

resolve any inconsistency via suboptimal compromise.
The second method we considered, known as SC3 [4], is
specifically designed for single-cell analysis. This method
performs an unweighted ensemble of k-means cluster-
ings for various parameter choices without specifically
targeting rare cell detection. Regardless of the specific
parameter choices, k-means cannot resolve the rarest
clusters, and the final ensemble clustering splits the
largest group into three and differentiates only one of

Fig. 2 The application of GiniClust2 and comparable methods to simulated data. a A heatmap representation of the simulated data with six
distinct clusters, showing the genes permuted to define each cluster. A zoomed-in view of the rare clusters is shown in the smaller heatmap. b A
comparison between the true clusters (x-axis) and clustering results from GiniClust2 and comparable methods (y-axis). Each cluster is represented
by a distinct color bar. Multiple bars are shown if a true cluster is split into multiple clusters by a clustering method. c A three-dimensional visualization
of the GiniClust2 clustering results using a composite tSNE plot, combining two Fano-based tSNE dimensions and one Gini-based tSNE dimension. The
inset shows a zoomed-in view of the corresponding region
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the four rare clusters (Fig. 2b, Additional file 1,
Additional file 2: Figure S1). These analyses suggest
that our cluster-aware, weighted ensemble approach is
important for optimally combining the strengths of
different methods.
We also compared the performance of GiniClust2 with

other rare cell type-detection methods. In particular, we
compared with RaceID2 [10], which is an improved ver-
sion of RaceID [9] developed by the same group. For fair
comparison, we considered k = 2, the exact number of
common cell clusters, and k = 12, the parameter value
recommended by authors Grün et al. as determined by a
within-cluster dispersion saturation metric [10]. In both

cases, RaceID2 over-estimated the number of clusters,
and split both common and rare cell clusters into
smaller subclusters (Fig. 2b, Additional file 1, Additional
file 2: Figure S1). This tendency of over-clustering is
consistent with our previous observations [11].

Robust identification of rare cell types over a wide range
of proportions
In order to evaluate the performance of GiniClust2 on
analyzing real scRNA-seq datasets, we focused on one of
the largest public scRNA-seq datasets generated by 10X
Genomics [17]. The dataset consists of transcriptomic
profiles of about 68,000 peripheral blood mononuclear

Fig. 3 Analysis of the 68 k PBMC dataset [17]. a A visualization of reference labels for the full data set (left), along with the three cell subtypes
selected for detailed analysis (right). b Comparison of the performance of different clustering methods, quantified by a Matthews correlation
coefficient (MCC) [18] for each of the three cell subtypes
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cells (PBMCs) [17], which were classified into 11 sub-
populations based on transcriptomic similarity with
purified cell types (Fig. 3a). It was noted that the tran-
scriptomic profiles of several subpopulations are nearly
indistinguishable [17].
To reduce the effects of stochastic variation and tech-

nical artifacts, we started by considering only a subset of
cell types whose transcriptomic profiles are distinct from
one another. In particular, we focused on three large
subpopulations: CD56+ natural killer (NK) cells, CD14+
monocytes, and CD19+ B cells. To ensure our analysis is
not affected by within-cell type heterogeneity, additional
known gene markers were used to further remove het-
erogeneity within each subpopulation (see “Methods” for
cell type definition details). In the end, three populations
were selected, corresponding to NK, macrophage, and B
cells, respectively (Fig. 3a). To systematically compare
the ability of different methods in detecting both com-
mon and rare cell types, we created a total of 140 ran-
dom subsamples that mix different cell types at various
proportions (Additional file 2: Table S1), with the rare
cell type (macrophage) proportions ranging from 0.2% to
11.6% (see “Methods” for details).
We applied GiniClust2 and comparable methods to

the down-sampled datasets generated above. Each
method was evaluated based on its ability to detect
each cell type using the Matthews correlation coeffi-
cient (MCC) [18] (Fig. 3b). The MCC is a metric that
quantifies the overall agreement between two binary
classifications, taking into account both true and false
positives and negatives. The MCC value ranges from −
1 to 1, where 1 means a perfect agreement between a
clustering and the reference, 0 means the clustering is
as good as a random guess, and − 1 means a total dis-
agreement between a clustering and the reference. In
addition, we also evaluated the performance of each
method using several additional metrics (Additional file
1). While each metric typically generates a different
value, the relative performance across different cluster-
ing methods is highly conserved (Additional file 2:
Figure S4).
RaceID2 is the best method for detecting the rare

macrophage cell type at a frequency of 1.6% or lower,
and GiniClust2 is the next best method. As expected,
the performance of GiniClust degrades as the “rare” cell
type becomes more abundant, whereas Fano factor-
based k-means becomes more powerful in such cases.
Combining these two methods enables GiniClust2 to
perform among the top over a wide range of rare cell
proportions. The remaining methods cannot detect rare
cell clusters well. For the common groups, Fano factor-
based k-means tends to perform better, but only if the
parameter is chosen correctly. For example, Fano factor-
based k-means with k = 4 systematically splits the largest

NK cell group and leads to a relatively low MCC value.
Other clustering methods that use Fano factor-based
feature selection (such as hierarchical clustering and
community detection) also adequately pick up common
clusters. This strong performance is preserved by the
GiniClust2 method. In comparison, RaceID2 does not
perform as well here, since some of the cells in the com-
mon groups are falsely identified as rare cells. Taken
together, these comparative results suggest that
GiniClust2 reaches a good balance for detecting both
common and rare clusters. The same conclusion can be
arrived at using alternative evaluation metrics
(Additional file 2: Figure S4).

Detection of rare cell types in differentiating mouse
embryonic stem cells
To test if GiniClust2 is useful for detecting previously
unknown, biologically relevant cell types, we analyzed a
published dataset associated with leukemia inhibitory
factor (LIF) withdrawal-induced mouse embryonic stem
cell (mESC) differentiation [19]. Previously, we applied
GiniClust to analyze a subset containing undifferentiated
mESCs, and identified a rare group of Zscan4-enriched
cells [11]. As expected, these rare cells were rediscovered
using GiniClust2.
In this study, we focused on the cells assayed on day 4

post-LIF withdrawal, and tested if GiniClust2 might un-
cover greater cellular heterogeneity than previously
recognized. GiniClust2 identified two rare clusters con-
sisting of five and four cells, respectively, corresponding
to 1.80% and 1.44% of the entire cell population. The
first group contains 25 differentially expressed genes
when compared to the rest of the cell population
(MAST likelihood ratio test p value < 1e-5, fold change
> 2), including known primitive endoderm (PrEn)
markers such as Col4a1, Col4a2, Lama1, Lama2, and
Ctsl. These genes are also associated with high Gini
index values. Overall there is a highly significant overlap
between differentially expressed and high Gini genes
(Fisher exact test p value < 1e-18). The second group
contains ten differentially expressed genes (MAST likeli-
hood ratio test p value < 1e-5, fold change > 2), including
maternally imprinted genes Rhox6, Rhox9, and Sct, all of
which are also high Gini genes. Once again there is a
significant overlap between differentially expressed and
high Gini genes (Fisher exact test p value < 1e-12).
Although these clusters were detected in the original
publication [19], this was achieved based on a priori
knowledge of relevant markers. Here, the strength of
GiniClust2 is that it can identify these clusters without
previous knowledge.
In addition, GiniClust2 identified two common clus-

ters. The first group specifically expresses a number of
genes related to cell growth and embryonic
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development, including Pim2, Tdgf1, and Tcf15 (MAST
likelihood ratio test p value < 1e-5, fold change > 2), in-
dicating it corresponds to undifferentiated stem cells.
The second group is strongly associated with a number
of genes related to epiblast cells, including Krt8, Krt18,
S100a6, Tagln, Actg1, Anxa2, and Flnc (MAST likelihood
ratio test p value < 1e-5, fold change > 2), suggesting this
group corresponds to an epiblast-like state. Of note, 114
of the 128 genes (Fisher exact test p value < 1e-88) spe-
cifically expressed in this group were selected as high
Fano factor genes, confirming the utility of the Fano fac-
tor in detecting common cell types. Both populations
were discovered in the original publication [19]. The dis-
similarity between these cell types is evident in the heat-
map (Fig. 4a) and composite tSNE plot (Additional file 2:
Figure S5).
For comparison, we applied RaceID2 to analyze the

same dataset. Unlike GiniClust2, RaceID2 broke each
cluster into multiple subclusters, and failed to identify

the rare cell clusters (Fig. 4b). With k = 2, RaceID2
found a total of 11 clusters. Clusters 1, 2, 4, and 9 dis-
play an epiblast-like signature, clusters 7 and 10 overex-
press genes relating to maternal imprinting, and clusters
8 and 11 correspond to PrEn cells. From these results it
appears that RaceID2 has difficulty in differentiating
rare, biologically meaningful cell types from outliers.

Scalability to large data sets
With the rapid development of single-cell technologies, it
has become feasible to profile thousands or even millions
of transcriptomes at single-cell resolution. Thus, it is de-
sirable to develop scalable computational methods for
single-cell data analysis. As a benchmark, we applied Gini-
Clust2 to analyze the entire 68 k PBMC data set [17] de-
scribed above to uncover hidden cell types. The complete
analysis took 2.3 h on one core of a 2 GHz Intel Xeon
CPU and utilized 237 GB of memory (not optimized for
speed or memory usage). For comparison, RaceID2

Fig. 4 Analysis of the inDrop dataset for day 4 post-LIF mESC differentiation [19]. a A heatmap of top differentially expressed genes for each GiniClust2
cluster. The color bar above the heatmap indicates the cluster assignments. b A comparison of GiniClust2 and RaceID2 clustering results, for common
(above) and rare (below) cell types. The same color-coding scheme is used in all panels
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analysis could not be completed for this large dataset. One
possible explanation is this method may be limited to
handling data sets with less than 65,536 data points due to
an intrinsic vector size restriction in R. Our implementa-
tion of GiniClust2 circumvents this restriction by splitting
up larger vectors into several smaller ones, with no
changes to the functionality of the code. In principle, the
same strategy can be implemented in RaceID2 to over-
come this limitation. Comparisons of computational run-
times between RaceID2 and GiniClust2 on smaller data
sets show that the runtime of GiniClust2 scales better with
the number of cells in the data set (Additional file 1,

Additional file 2: Figure S6). For example, for a data set of
80 cells GiniClust2 and RaceID2 take the same amount of
time, whereas for the simulated data set of 3023 cells
GiniClust2 takes just under 10 min while RaceID2 takes
1 h and 13 mins. Despite the advantages of GiniClust2, it
should be noted that GiniClust2 still requires a consider-
able amount of memory to run on very large data sets,
presenting a limitation to the application of this method
to even larger data sets.
Our analysis identified nine common clusters and two

rare clusters (Fig. 5a). In general, the results of GiniClust2
and Fano factor-based k-means are similar; both agree

Fig. 5 Results from the full 68 k PBMC data analysis. a A composite tSNE plot of the GiniClust2 results; rare cell types are circled. b A confusion
map showing similarities between GiniClust2 clusters and reference labels. Values represent the proportion of cells per reference label that are in
each cluster. c A bubble plot showing expression of cluster-specific genes. Size represents the percentage of cells within each cluster with non-zero
expression of each gene, while color represents the average normalized UMI counts for each cluster and gene
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well with the reference cell types (Fig. 5b). To quantify this
agreement, we use normalized mutual information (NMI),
which is an entropy-based method normalized by cluster
size that can be applied to multi-class classification prob-
lems [20]. A value of 1 indicates perfect agreement,
whereas a value of 0 means the performance is as good as
a random guess. Here, values are 0.540 for GiniClust2 and
0.553 for Fano factor-based k-means. Most of the discrep-
ancy between the clustering results and reference labels
are associated with T-cell subtypes. As noted by the ori-
ginal authors [17], these subtypes are difficult to separate
because they share similar gene expression patterns and
biological functions. The common clusters detected by
GiniClust2 and Fano factor-based k-means express marker
genes known to be specific to the cell types represented in
the reference [21] (Fig. 5c).
With respect to rare cell types, our first group contains

a homogeneous and visually distinct subset of 171 of 262
total CD34+ cells (cluster 2, Fig. 5a). This cluster was par-
tially detectable using Fano factor-based k-means, al-
though it was partially mixed with major clusters. The
second rare cell cluster is previously unrecognized (cluster
3, Fig. 5a). This cluster contains 118 cells (0.17%) within a
large set of 5433 immune cells with similar gene expres-
sion patterns. Among these 118 cells, 101 cells are classi-
fied as monocytes, whereas 16 are classified as dendritic
cells, and one is classified as a CD34+ cell. Differential ex-
pression analysis (MAST likelihood ratio test p value < 1e-
5, fold change > 2) identified 187 genes that are specifically
expressed in this cell cluster, including a number of genes
associated with tolerogenic properties, such as Ftl, Fth1,
and Cst3 [22], suggesting these cells may be associated
with elevated immune response and metabolism. Add-
itional validation would be necessary to determine
whether this cluster is functionally distinct. Taken to-
gether, these results strongly indicate the utility of Gini-
Clust2 in analyzing large single-cell datasets.

Discussion and conclusions
According to the “no free lunch” theorem [23], an algo-
rithm that performs well on a certain class of
optimization problems is typically associated with de-
graded performance for other problems. Therefore, it is
expected that clustering algorithms optimized for detect-
ing common cell clusters are unable to detect rare cell
clusters, and vice versa. While ensemble clustering is a
promising strategy to combine the strengths of multiple
methods [4, 5, 16], our analysis shows that the trad-
itional, unweighted approach does not perform well.
To optimally combine the strengths of different clus-

tering methods, we have developed GiniClust2, which is
a cluster-aware, weighted ensemble clustering method.
GiniClust2 effectively combines the strengths of Gini
index- and Fano factor-based clustering methods for

detecting rare and common cell clusters, respectively, by
assigning higher weights to the more reliable clusters for
each method. By analyzing a number of simulated and
real scRNA-seq datasets, we find that GiniClust2 con-
sistently performs better than other methods in main-
taining the overall balance of detecting both rare and
common cell types. This weighted approach is generally
applicable to a wide range of problems.
GiniClust2 is currently the only rare cell-specific detec-

tion method equipped to handle such large data sets, as
demonstrated by our analysis of the 68 k PBMC dataset
from 10X Genomics. This property is important for de-
tecting hidden cell types in large datasets, and may be par-
ticularly useful for annotating the Human Cell Atlas [24].

Methods
Data preprocessing
The processed mouse ESC scRNA-seq data are repre-
sented as UMI filtered-mapped counts. Removing genes
expressed in fewer than three cells, and cells expressing
fewer than 2000 genes, we were left with a total of 8055
genes and 278 cells.
The processed 68 k PBMC dataset, represented as

UMI counts, was filtered and normalized using the code
provided by 10X Genomics (https://github.com/10XGe
nomics/single-cell-3prime-paper). The resulting data
consist of a total of 20,387 genes and 68,579 cells. Cell-
type labels were assigned based on the maximum correl-
ation between the gene expression profile of each single
cell to 11 purified cell populations, using the code pro-
vided by 10X Genomics.

GiniClust2 method details
The GiniClust2 pipeline contains the following steps.

Step 1: Clustering cells using Gini index-based features
The Gini index for each gene is calculated and normalized
as described before [11]. Briefly, the raw Gini index is cal-
culated as twice the area between the diagonal and the Lo-
renz curve, taking a range of values between 0 and 1. Raw
Gini index values are normalized by removing the trend
with maximum expression levels using a two-step LOESS
regression procedure as described in [11]. Genes whose
normalized Gini index is significantly above zero (p value
< 0.0001 under the normal distribution assumption) are
labeled high Gini genes and selected for further analysis.
A high Gini gene-based distance is calculated between

each pair of cells using the Jaccard distance metric. This
is used as input into DBSCAN [25], which is imple-
mented using the dbscan function in the fpc R package,
with method = “dist”. Parameter choices for eps and
MinPts are discussed in Additional file 1.
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Step 2: Clustering cells using Fano factor-based features
The Fano factor is defined as the variance over mean ex-
pression value for each gene. The top 1000 genes are
chosen for further analysis. Principal component analysis
(PCA) is applied to the gene expression matrix for dimen-
sionality reduction, using the svd function in R. The first 50
principal components are reserved for clustering analysis.
Cell clusters are identified by k-means clustering, using the
kmeans function in R with default parameters. Optimal
choice of k is discussed in Additional file 1. To improve ro-
bustness, 20 independent runs of k-means clustering with
different random initializations are applied to each dataset,
and the optimal clustering result is selected.

Step 3. Combining the results from steps 1 and 2 via a
cluster-aware, weighted ensemble approach
We adapted the weighted consensus clustering algo-
rithm developed by Li and Ding [13] by further consid-
ering cluster-specific weighting. For GiniClust, higher
weights are assigned to the rare cell clusters and lower
weights to common clusters, whereas the opposite
scheme is used to weight the outcome from Fano factor-
based k-means clustering. This allows us to combine the
strengths of each clustering method. The mathematical
details are described as follows, and visualized in Fig. 1b.
Let PG be the partitioning provided by GiniClust, and

PF the partitioning provided by Fano factor-based clus-
tering. Each partition consists of a set of clusters: CG

¼ CG
1 ;C

G
2 ;…;CG

kG , and C F ¼ CF
1 ;C

F
2 ;…;CF

k F
: Define the

connectivity matrices as:

MijðPGÞ ¼ f 1; ði; jÞ∈CkðPGÞ
0; otherwise

; and

MijðPFÞ ¼ f
1; ði; jÞ∈CkðPFÞ
0; otherwise:

If two cells are clustered together in the same group,
their connectivity is 1, while if they are clustered separ-
ately, their connectivity is 0. Define the weighted con-
sensus association as:

�Mij ¼ wG
ij Mij P

G
� �þ wF

ij Mij P
F

� �

where wG
ij þ wF

ij ¼ 1;wG
ij ;w

F
ij ≥0∀i; j∈½1; n� , n represents

the number of cells. Weights wG
ij and wF

ij are specific to
each pair of cells, and are determined based on ~wG

i and
~wF
i , weights that are specific to each cell.
For simplicity, we set the cell-specific weights for the

Fano factor-based clusters as a constant: ~wF
i ¼ f 0 . The

cell-specific GiniClust (wei
GÞ weights are determined as a

function of the size of the cluster containing the particular
cell. Our choices for these weights derive from the obser-
vation that as the proportion of the rare cell type

increases, the utility of GiniClust begins to decline. For
simplicity, we model the cell-specific GiniClust weights
using a logistic curve, specified by the following function:

~wG
i xið Þ ¼ 1−

1

1þ e−
xi−μ

0
s0

where xi is the proportion of the GiniClust cluster to
which cell i belongs, μ' is the rare cell type proportion at
which GiniClust and Fano factor-based clustering
methods have approximately the same ability to detect
rare cell types, and s' represents how quickly GiniClust
loses its ability to detect rare cell types above μ'. The pa-
rameters s', μ', and f' can be viewed as intermediate vari-
ables that are closely associated with the parameters s, μ,
and f, schematically shown in Fig. 1c. Specifically, f
¼ f 0

1þ f 0 , s = s', and μ is obtained relative to the other pa-
rameters through the following relationship: f 0 ¼ 1−

1

1þe
−
μ−μ0
s0
. The selection of the parameter values for s', μ',

and f', as well as a sensitivity analysis, are described in
Additional file 1.
To set the cell pair-specific weights, we first define

~wG
ij ¼ max ~wG

i ; ~w
G
j

� �
and ~wF

ij ¼ ~wF
i

Then, weights are normalized to 1:

wG
ij ¼

~wG
ij

~wG
ij þ ~wF

ij

andwF
ij ¼

~wF
ij

~wG
ij þ ~wF

ij

Each cell–cell pair will thus be assigned a weighted
consensus association between 0 and 1, which is a
weighted average of both GiniClust and Fano factor-
based clustering associations, where the weights are
functions of the size of the cell clusters.
At this point, the weighted consensus association

matrix provides a probabilistic clustering for each cell,
where each entry represents the probability that cell i
and cell j reside in the same cluster. To transform this
into a final deterministic clustering assignment, we
optimize the following:

minU �M−Uj jj j2;
where U is any possible connectivity matrix. In Li and
Ding [13], this optimization problem is solved via sym-
metric non-negative matrix factorization (NMF) to yield a
soft clustering. To obtain a hard clustering we add an or-
thogonality constraint, leading to k-means clustering [26],
implemented once again using the kmeans R function.

tSNE visualization
Dimension reduction by tSNE [27] is performed using
the Rtsne R package. The tSNE algorithm is first run
using the Gini-based distance to obtain a one-
dimensional projection of each cell. For large data sets,
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tSNE is run on the first 50 principal components of the
Gini-based distance to prevent tSNE from becoming
prohibitively slow. Then, the tSNE algorithm is run
using the first 50 principal components of our Fano-
based Euclidean distance to obtain a separate two-
dimensional projection. The three resulting dimensions
(one for Gini-based distance and two for Fano-based dis-
tance) are plotted to visualize cluster separation.

Differential expression analysis on resulting clusters
Differentially expressed genes for each cluster are deter-
mined by comparing their gene expression levels to all
other clusters. This is performed using the zlm.Single-
CellAssay function in the R MAST package [28], with
method = “glm”. P values for differentially expressed
genes are calculated using the lrTest function, with a
hurdle model.

SC3 analysis
SC3 [4] was accessed through the SC3 Bioconductor R
package. SC3 was applied to the simulated data set post-
filtering using default parameters, with k = 6 to match
the true number of clusters. The author-recommended
choice of k using the Tracy-Widom test yielded a k of
55, and was deemed inappropriate for this analysis.

CSPA analysis
Matlab code for the CSPA [16] was accessed through
http://strehl.com/soft.html, under “ClusterPack_V2.0.”
CSPA was applied to the Gini and Fano-based clustering
results for the simulated data set, using the clusteren-
semble function, specifying the CSPA option. Results are
shown for k = 5, the default parameter, and k = 6, the
true number of clusters.

RaceID2 analysis
RaceID2 [10] R scripts were accessed through https://
github.com/dgrun/StemID. RaceID2 was applied to
already-filtered data sets as above to make results
directly comparable to GiniClust2, with default parame-
ters. Results are shown for k set to the default parameter
as determined by a within-cluster dispersion saturation
metric [10], and k set to match the corresponding
GiniClust2 k parameter specification.

Hierarchical clustering analysis
Hierarchical clustering was performed on a Fano-based
Euclidean distance using the hclust function in R. For
the simulated data analysis, results are shown for choices
k = 6, to match the true number of clusters, and k = 2,
the parameter value as determined by the gap statistic
through the clusGap function in R. For the subsampled
PBMC analysis, results are shown for k = 3, to match the
true number of clusters.

Community detection analysis
Community detection was performed on a k-nearest
neighbor (kNN) graph, using a high Fano feature space,
for simulated and subsampled data sets. Function nn2 in
the RANN R package was used to compute a kNN dis-
tance with default parameters. The igraph R package was
used to perform community detection, using the cluster_
edge_betweenness function with default parameters.

Simulation details
We created synthetic data following the same approach
as Jiang et al. [11], specifying one large 2000 cell cluster,
one large 1000 cell cluster, and four rare clusters of 10,
6, 4, and 3 cells, respectively. Gene expression levels are
modeled using a negative binomial distribution, and dis-
tribution parameters are estimated using an intestinal
scRNA-seq data set using a background noise model as
in Grün et al. [9]. To create clusters with distinct gene
expression patterns, we permute 100 lowly (mean < 10
counts) and 100 highly (mean > 10 counts) expressed
gene labels for each cluster (see Jiang et al. [11] for more
details). This results in a 23,538 gene by 3023 cell data
set. After filtering (as above) we are left with 3708 genes
and 3023 cells.

10X Genomics data subsampling
The full 68 k 10X Genomics PBMC dataset is down-
sampled for model evaluation. We consider only three
cell types here. CD19+ B cells are defined by their cor-
relation to reference transcriptomes as in Zheng et al.
[17]. CD14+ monocytes and CD56+ NK cells are defined
in the same way, but here we recognize that these
broadly defined cell types actually consist of two sub-
types each. We therefore use additional known markers
to refine each cell type definition. With regard to CD14+
monocytes, we use macrophage markers Cd68 and Cd37
[21] to separate macrophages and monocytes, and we
define macrophage cells as those with positive expres-
sion of both markers. These cells are selected for sub-
sampling. The CD56+ NK cells are composed of NK and
NKT cells, so we use T-cell markers Cd3d, Cd3e, and
Cd3g [21] to separate the groups, and define the NK
cells as those with zero expression of these three
markers. There is some additional heterogeneity in this
NK group, so we choose to include only those NK cells
that were most highly correlated (top 50%) to the refer-
ence transcriptomes. Given these cell type definitions,
we created seven sets of 20 subsampled data sets each
for a total of 140 data sets in the following manner: five
cells were randomly sampled from the macrophage cell
population to form a “rare” cell group for all 120 data-
sets. Then, for each set of 20 data sets, cells were ran-
domly sampled from the NK and B cells in specified
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numbers to form “common” cell clusters, the details of
which are listed in Additional file 2: Table S1.

Additional files

Additional file 1: Supplementary information. (DOCX 38 kb)

Additional file 2: Supplementary Figures S1–S10, Supplementary Table
S1. (PDF 1509 kb)
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